icon_arrow_down icon_arrow_left icon_arrow_left_large icon_arrow_right icon_arrow_right_large icon_arrow_up icon_bullet_arrow icon_call icon_close icon_facebook icon_googleplus icon_grid_off icon_instagram icon_login icon_mail icon_menu icon_message icon_minus icon_pinterest icon_plus icon_quote_end icon_quote_start icon_refresh icon_search icon_tick_on icon_twitter icon_video_play icon_youtube

Sign up to our mailing list for the latest Boat International & Events news.

SIGN UP

Missing your newsletter?

The General Data Protection Regulation (GDPR) which came in to effect on the 25th May might mean that you’ve stopped receiving emails from us. To make sure you don’t miss out on any more emails from Boat International update your email preferences now.

UPDATE NOW
No, thanks

Exclusive: 6 facts about the build of Sailing Yacht A

3 of 6 3/6
VIEW ON ONE PAGE
Sailing Yacht A Masts Loaded
3

The rig and sail plan of Sailing Yacht A

Three colossal unstayed masts – the largest carbon masts in the world – define Sailing Yacht A. The mainmast towers 100 metres above the waterline – taller than Big Ben. An enclosed electric gimballed crow’s nest is incorporated, to whoosh a crew member 60 metres up the mast for what will surely be one of the most amazing views on the water. Dykstra Naval Architects, the Dutch naval architect that designed the rig for Maltese Falcon, was the obvious choice to develop an easy-to-use and safe sailing system.

Being “sail assisted”, the ratio between sail area and the yacht’s displacement is somewhat lower than would be found on a pure sailing yacht. Dykstra optimised the sailplan with full roach sails and freestanding aerodynamically efficient masts that can be rotated a total of 70 degrees to increase lift-drag characteristics.

Curiously, the masts are curved. “When we started to design this rig,” explains Mark Leslie-Miller from Dykstra, “the distinct feature of the freeboard sloping up towards the stern was already defined. For styling reasons, we wanted the foot of the sails [thus the booms] to align with the sheerline.” Sails this big would need to furl rather than flake when not in use. Furling booms, however, have to be at 90 degrees to the mast in order to work. Rather than tip the entire mast forward to preserve the right angle, Dykstra designed in the curve to keep the design aligned.

Magma Structures in Portsmouth, UK, developed the unique freestanding spars in carbon fibre, the only material that could cope with the stresses involved; masts this size cannot, in fact, be built using metals, according to Magma’s Damon Roberts, and they posed quite a challenge for the team. “Since the rig concept is unprecedented on this scale, there were no easy answers or standard solutions for any of the challenges that the rig design posed,” he says.

Read More
Sponsored Listings
Upgrade your account
Your account at BOAT International doesn't include a BOAT Pro subscription. Please subscribe to BOAT Pro in order to unlock this content.
Subscribe More about BOAT Pro